

Reliability of Class-Y Packages in focus of Xilinx V4/V5 and Aeroflex packages

Jong-ook Suh Jong-ook.Suh@jpl.nasa.gov 818-354-4574 Jet Propulsion Laboratory, California Institute of Technology

NASA Electronic Parts and Packaging Program (NEPP) 2015 Annual NEPP Electronic Technology Workshop (ETW) June 26th, 2015

Background

Class-Y packages : Non-hermetic ceramic flip chip packages

Underfill and heat spread attach material are exposed to outside environment.

- Direct attachment of heat spread to die for better thermal management.
- Easy to mount capacitors close to the die.

	Xilinx CF package (before 2014)	Xilinx CN Package (2014)
Package Assembly	IBM Bromont, Canada	Kyocera / Six Sigma
Heat spread	SiC (non-conductive)	AI-SiC (Conductive)
Heat spread corner pillar	None	4 corner pillars
Heat spread attach material (TIM1)	Electrically conductive	Electrically non-conductive
Flip chip bump	95Pb5Sn	Sn63Pb37
Underfill	IBM proprietary	Xilinx proprietary
Solder Columns	IBM CLASP column (90Pb10Sn)	Six Sigma column (80Pb20Sn with Cu spiral)

1. Non-hermeticity related

• Potential degradation of materials by exposure to environment

2. High power, fine feature size related

- High heat
- High current density

3. Large package size, large die size

- Solder column reliability
- Flip chip solder joint reliability

Class-Y related NEPP tasks at JPL in the current presentation

		FY	Title
	CF heat spread adhesive material (TIM1) (IBM ATI material)	2012	Physics of Failure Analysis of Xilinx Flip Chip CCGA Packages
	CF underfill material (IBM LP2 material)	2011	Underfill Materials for Reliable Flip chip Packaging
		2012	Physics of Failure Analysis of Xilinx Flip Chip CCGA Packages
	Flip chip solder joints/ Underfill	2012/ 2013	Aeroflex technology as class-Y demonstrator
	CN package's Six Sigma Columns	2015	Virtex 5 CN Daisy chain evaluation
leat CF	Thermal management (TIM2/heat transfer device)	2014	Thermal Interface Materials Selection and Application Guidelines

Underfill and TIM1 study

Motivation:

Potential degradation of underfill and TIM1 by exposure to environment

Procedure:

 Raw materials of the CF package (LP2 & ATI) were procured from IBM during FY11 and FY12.

(Raw materials of the CN package are currently being procured. Xilinx has provided raw material information to Shri Agarwal at JPL.)

- Assessed and rated the potential risks of various constituents of the LEO environment to the reliabilities of the materials prior to experiments.
 - Ionizing radiation, UV radiation: Mitigated by shielding practices. Not strong enough to deteriorate underfill and TIM1 materials.
 - Atomic oxygen (ATOX) : Only low energy ATOX inside spacecraft. No direct ATOX impingement.
 - Long term vacuum exposure
 - Humidity
- Exposed cured samples to various types of environment for extended time.

Procedure (cont.)

- Characterized the samples before and after the environmental exposure.
 - Glass transition temperature : DN
 - Thermal degradation
 - Outgassing
 - Dynamic/loss modulus
 - Elastic modulus
 - Tensile strength
 - Hardness
 - Adhesive strength
 - Thermal conductivity

- : DMA, TMA
- : TGA
- : DART-MS
- : DMA over different frequencies and temperatures
- : Tensile tests at -55, RT,+125°C.Nano-indentation.
- : Tensile tests
- : Nano-indentation
- : Lap shear tests at -55, RT, and +125°C.
- : Laser flash method

Results

٠

- Long term vacuum thermal exposure (10⁻⁷ torr, 135°C, 3 months) : Not issue.
 - Increased adhesive strength and Tg
- ATOX exposure of underfill, simulated through O₂ plasma.: Not issue when inside spacecraft.
 - No potential contaminant was created by AO radiation.
- Long term humidity exposure (85°C/85% RH, 27 days)
 - Decreased adhesive strengths of both materials by 30%
 - Lowered Tg of both materials
 - Other changes : Distorted TMA and DMA curves

Flip chip solder interconnection reliability

JPL and Aeroflex performed a collaborative study on reliability of class-Y packages.

- Aeroflex has been qualifying their packaging technology for Class-Y parts.
- Aeroflex supplied its R&D samples to JPL. Flip chip on ceramic substrate with daisy chained flip chip bumps. No columns.

Component	Aeroflex Sample	Xilinx CN Package	Xilinx CF Package
Die Dimension	15 x 15x 0.7mm	25x 18x 1 mm	25x18x1mm
Under Bump Metallurgy (UBM)	Al/Ni(V)/Cu (Typical sputtered)	Ti/Cu/Ni	Ti/Cu/Ni (Typical electroplated)
Underfill Material	Aeroflex proprietary	Kyocera proprietary	LP2 material; IBM proprietary.
Flip chip Solder Bump Material	Sn63Pb37 (T _m =183°C)	Sn63Pb37 (T _m =183°C)	<mark>95Pb5Sn</mark> (T _m = 308~312 ° C)
Substrate/Carrier	Multilayer ceramic	Multilayer ceramic	Multilayer ceramic
Flip chip passivation opening	80 µm	~80 µm	~80 µm
size			
UBM Diameter	102 µm	~105 µm	~105 µm
Flip chip Solder Bump height	~80 µm	~90 µm	~90 µm
(assembled)			
Flip chip Solder Bump width	~150 µm	~150 µm	~150 µm
Flip chip Solder Bump pitch size	254 µm	~250 µm	~250 µm

Samples were pre-conditioned and temperature cycled.

- Long term vacuum thermal aging (IBM underfill material exhibited improved properties after long term vacuum thermal aging.)
- Long term humidity exposure (IBM underfill showed 30% reduction in adhesive strength, reduced Tg...)
- Multiple reflow
 - Sn63 bumps will reflow during the subsequent reflow process.
 - Both Aeroflex and Xilinx CN packages have Sn63 flip chip solder bumps.
 - Xilinx CF package had 95Pb high-Pb flip chip solder bumps.
- Current stressing
 - Electromigration reduces the solder joint strength.

Test conditions

- No pre-conditioning (control)
 - Long term vacuum thermal aging (10⁻⁷ torr, 135°C, 3 months)
 - Long term humidity exposure (85°C/85%, 27 days)
- Multiple reflow (5x reflows) ٠
- Current stressing (96 hours, 2 x 10⁴ A/cm² at 110°C, Package : RT) \rightarrow Temp cycling

- \rightarrow Temp cycling (-55/125°C)
 - \rightarrow Temp cycling
 - \rightarrow Temp cycling
 - \rightarrow Temp cycling

Flip chip solder joint interconnection reliability (cont.)

Results

- Vacuum thermal aging and multiple reflow <u>improved</u> temp cycling life, almost by 50%.
- Humidity exposure <u>reduced</u> temp cycling life, almost by 30%
- Current stressing did not affect the temp cycling life.

Precondition	Weibull Life	Weibull Slope	Weibull Fit R2
Baseline (no precondition)	3629	6.3	0.9613
Vacuum Thermal aging (10 ⁻⁷ torr, 135°C, 3 months)	5474	8.9	0.9402
Humidity exposure (85°C/85%, 27 days) Multiple reflow (5X reflows)	2438 5237	7.5 6.4	0.9717
Current stressing (96 hours, 2 x 10 ⁴ A/cm ² at 110°C)	3978	4.9	0.8013

Conclusion of non-hermeticity related studies

Underfill plays critical role in flip chip interconnection reliability.

- The common wisdom among flip chip engineers : Flip chip solder bumps generally do not fail before underfill is compromised.
- All Aeroflex samples failed by underfill crack formation and propagation.
- Current stressing did not affect the temperature cycling life.
 - After current stressing, one out of two bumps suffered at least 20% reduction of shear strength.
 (None-underfilled flip chip dies exhibited 10% drop in die shear strength after the current stressing.)
- Vacuum thermal aging increased the temp cycling life of Aeroflex samples by ~30%. (Vacuum thermal aging improved the adhesive strength of CF packages underfill material. Tg and elastic modulus were increased.)
- Humidity exposure reduced temp cycling life of Aeroflex samples by ~50%.
 (Humidity exposure reduced the adhesive strength of the CF package underfill material by 25%. Tg also decreased.)

Moderate amount of heat exposure enhances flip chip package reliability.

- Multiple reflowed samples and vacuum thermal aging: ~50% increase in temp cycling life.
- Exposure to space vacuum is not of a concern.
- Exposure to humidity needs to be minimized.
 - Baking will only partially restore the underfill, once exposed to humidity.

The adhesive strength of TIM1 material and thermal management scheme

Lap shear strength of the TIM1 material of Xilinx CF package

	−55°C	+22°C	at +125°C
Lap shear strength (psi)	1985	2061	631

CN package solder column reliability study

- The change of solder columns.
 - From IBM's CLASP (90Pb10Sn) to Six Sigma columns (80Pb20Sn with copper spiral).
 - There are conflicting data from industries on the comparative reliabilities of the two types of columns.

Package	Size	1 st Fail	Char Life 0 to+100	Char Life* -55 to +105	Char Life* -55 to + 125
CG717 (6-sigma)	35 mm	2074	3672	1453	1133
CF1144 (6-sigma)	35 mm	1688	4302	1680	1327
CF1144 (ibm Clasp)	35 mm	8109	9686	3783	2989

From Xilinx's MRQW presentation, Dec 2010

- For CG624 (1.27 mm pitch), temperature cycle data showed 80/20 with a 20 mils or 22 mils diameter column performed better than 90/10 column. So far, up to 2300 cycles (when test stopped), there is no failure in 80/20 column, while 90/10 column failed at 1246 cycles.
- CG1152 (1 mm pitch) first 90/10 column failed at 878 cycles, while first 80/20 column failed at 1212 cycles.
- CG1272 (1 mm pitch) first 90/10 column failed at 1112 cycles, while first 80/20 column failed at 1534 cycles.

From Microsemi report: "Thermal Cycling Test Report for Ceramic Column Grid Array Packages – CCGA", Sep 2012

Test Matrix

- Total 20 parts
- 16 parts for solder column temp cycling life study
 - 4 parts : FR4 board, 0/100°C
 - 4 parts : PI board, 0/100°C
 - 4 parts : FR4 board, -55/100°C
 - 4 parts : PI board, -55/100°C
- 2 parts for capacitor evaluation and temp cycling
- 2 parts for new monitoring method development and dual zone chamber temp cycling.
- PI board and FR4 board. 18 layers. 0.7mm pad size.

Part S/N	Board	Test Details	Note	Board SN
01		Capacitor exposure, temp cycling		SN009
	PI Board	Part level reflow> Process optimization> temp cycling> capacitor evaluation		SN001
02		etc		511001
03				SN101
04		0 to 100°C TC	Viliau test verset	311101
05		0 to 100 C TC	Xiinx test repeat	
06				SN102
07	FR4 Board			
08				SN103
09		-55 to 100°C TC		CN110.4
10				511104
11				SN002
12		0 to 100°C TC		511002
13		0 10 100 C TC		CNIOOD
14				SIN003
15				
16	PI Board			SN004
17		-55 to 100°C TC		SNOOF
18				51005
19		Impedance, Dual zone chamber cycling		SNOOG
20		impedance, Duai zone chamber cycling		210000

Part Level Inspection and Evaluation

- Every part was inspected prior to the board attachment
 - Inspection of workmanship defect of each column
- Capacitor inspection
 - Removed lid of one part. inspected capacitors.
- Capacitor solder: post multiple reflow evaluation

Up to 2 reflows. Capacitor was measured after each reflow. (Lid was reattached with Kapton tape during the reflows)

Test Board Assembly

- Pad/solder mask opening size and board finish are same as the Xilinx test board
- Two V5s per board
- Two types of resin materials:
 - Polyimide (IPC 4041/41)
 - FR4 (IPC 4041/26)
- Seven daisy chains per V5
 - Each corners, outer 2 rows, next 3 rows, and all internal rows.

Temperature cycling

Synergistic aspects with other NEPP task at JPL

• JPL Task "Microsemi CG1657 Evaluation", by Anupam Choubey

	Xilinx V5	Microsemi
# of columns	1752	1657
Package size	45x45 mm	42.5x42.5 mm
Ceramic thickness	4.11mm	2mm
Column type	Six Sigma	Six Sigma
Column height	2.20 mm	2.21 mm
Column diameter	0.51 mm	0.51 mm
Column pitch	1 mm	1 mm

- Boards are designed under same design principles.
- Boards will be exposed to same temperature cycling environment (same chamber).
- Boards are fabricated by the same manufacture.

Related documents

- Jong-ook Suh, R. Peter Dillon, "Xilinx V4 Package Reliability: Properties and Reliability of LP2 Underfill", NEPP report, 2012.
- Jong-ook Suh, "Physics of Failure Analysis of Xilinx Flip Chip CCGA Packages: Effects of Mission Environments on Properties of LP2 Underfill and ATI Lid Adhesive Materials", NEPP report, 2013.
- Jong-ook Suh, Scott Popelar, Shri Agarwal, "Aeroflex Technology as Class-Y Demonstrator", NEPP report, 2014
- Jong-ook Suh, R. Peter Dillon, Stephen Tseng, "Thermal Interface Materials Selection and Application Guidelines: In Perspective of Xilinx Virtex-5QV Thermal Management", NEPP report, in release process.

Microsemi CG1657 Evaluation

Anupam Choubey

Anupam.Choubey@jpl.nasa.gov 818-354-0522

Optical Images

Capacitor Revision (Change from AVX to Presidio)

AVX Interdigitated Capacitor

	Current Cap	Revised Version
Manufacturer	AVX (X7R)	Presidio (X7R)
Electrode	BME (Nickel)	PME (Silver Palladium)
Voltage	6.3V and 4V	6.3V
Capacitance	2.2 ± 20% 0.68 ± 20%	0.18 uF ± 10%
Dissipation Factor	5% max. (for 10V)	7.5% (MIL-PRF-Thin)
Thermal Conductivity	4-5 W/m K	6W/mK
Terminations	Plated Ni and Solder	NT9 (Ni + 90%Sn- 10%Pb)
L x W x T (mm)	2.03 x 1.27 x 0.96	0.05 x 0.08 x 0.017
Inductance	55 to 65 pH	110 to 130 pH range
Metallization Band		0.005 min band 0.02 min space

Presidio Low Inductance Capacitor

Package Internal View

22

Elemental Composition External Package

Solder Columns

EDX Elemental Mapping

Мар

Microstructure

Level	Number	Mean	Std Dev	Std Err Mean Lower 95%	Upper 95%	
TCT 0	28	0.435714	0.048795	0.00922	0.41679	0.45464
TCT 250	28	0.421429	0.041786	0.00790	0.40523	0.43763
TCT 400	28	0.425000	0.044096	0.00833	0.40790	0.44210

Presidio Capacitor (PME) - Electrode Silver, Palladium Dielectric – Barium Titanium oxide

FIB Cut for Presidio Capacitor

AVX Capacitor (BME) - Electrode – Nickel Dielectric - Barium Titanium oxide

Mechanical Package Model

